top of page
wiley.png

BACKGROUND

Vine weevil, Otiorhynchus sulcatus F. (Coleoptera: Curculionidae), is one of the most economically important pest species of berry and ornamental crops globally. Monitoring this nocturnal pest can be difficult and time consuming and the efficacy of current tools is uncertain. Without effective monitoring tools, implementation of integrated pest management strategies is challenging. This study tests the relative efficacy of a range of vine weevil monitoring tools. Whether host-plant volatiles and weevil feeding experience influence vine weevil capture is also tested.

RESULTS

Monitoring tool efficacy differed overall between the six monitoring tool designs tested and ranged from catches of 0.4% to 26.7% under semi-field conditions. Previous feeding experience influenced vine weevil behavior. In yew conditioned populations, 39% of the weevils responded to and were retained in the trap baited with yew foliage while 37% of weevils from Euonymus fortunei conditioned populations responded to and were retained in the trap baited with E. forunei foliage. A simple synthetic lure consisting of (Z)-2-pentenol + methyl eugenol also increased vine weevil catches compared with an unbaited trap.

CONCLUSION

Demonstrating differences in the efficacy of different monitoring tool designs is an important first step for developing improved methods for monitoring vine weevil populations within crops. This study presents the first direct comparison of vine weevil monitoring tool designs and indicates that trap efficacy can be improved by baiting with host-plant material or a synthetic lure based on host-plant volatiles. © 2019 Society of Chemical Industry

SUMMARY 
The globalization of trade and travel, in combination with climate change, have resulted in the geographical expansion of mosquito-borne diseases. Moreover, over-reliance on chemical pesticides to control mosquitoes has resulted in resistance, which threatens the management of disease risk. We show, for the first time, that mosquito traps baited with human odors, in combination with controlling mosquito larvae in breeding sites, resulted in the near elimination of mosquito populations on two small islands, and the elimination of Aedes mosquitoes for 6+ months on a third island, in the Maldives. The levels of control achieved are comparable to current genetic control methods that are far more costly and impractical for implementation on small islands. The approach presented here poses the first alternative in decades to manage mosquito-borne disease risk on small (tropical) islands in an affordable and environmentally friendly manner.


ABSTRACT
Globally, environmental impacts and insecticide resistance are forcing pest control organizations to adopt eco-friendly and insecticide-free alternatives to reduce the risk of mosquito-borne diseases, which affect millions of people, such as dengue, chikungunya or Zika virus. We used, for the first time, a combination of human odor-baited mosquito traps (at 6.0 traps/ha), oviposition traps (7.2 traps/ha) and larval source management (LSM) to practically eliminate populations of the Asian tiger mosquito Aedes albopictus (peak suppression 93.0% (95% CI 91.7–94.4)) and the Southern house mosquito Culex quinquefasciatus (peak suppression 98.3% (95% CI 97.0–99.5)) from a Maldivian island (size: 41.4 ha) within a year and thereafter observed a similar collapse of populations on a second island (size 49.0 ha; trap densities 4.1/ha and 8.2/ha for both trap types, respectively). On a third island (1.6 ha in size), we increased the human odor-baited trap density to 6.3/ha and then to 18.8/ha (combined with LSM but without oviposition traps), after which the Aedes mosquito population was eliminated within 2 months. Such suppression levels eliminate the risk of arboviral disease transmission for local communities and safeguard tourism, a vital economic resource for small island developing states. Terminating intense insecticide use (through fogging) benefits human and environmental health and restores insect biodiversity, coral reefs and marine life in these small and fragile island ecosystems. Moreover, trapping poses a convincing alternative to chemical control and reaches impact levels comparable to contemporary genetic control strategies. This can benefit numerous communities and provide livelihood options in small tropical islands around the world where mosquitoes pose both a nuisance and disease threat.

bottom of page